Diversity, Distribution and Hydrocarbon Biodegradation Capabilities of Microbial Communities in Oil-Contaminated Cyanobacterial Mats from a Constructed Wetland
نویسندگان
چکیده
Various types of cyanobacterial mats were predominant in a wetland, constructed for the remediation of oil-polluted residual waters from an oil field in the desert of the south-eastern Arabian Peninsula, although such mats were rarely found in other wetland systems. There is scarce information on the bacterial diversity, spatial distribution and oil-biodegradation capabilities of freshwater wetland oil-polluted mats. Microbial community analysis by Automated Ribosomal Spacer Analysis (ARISA) showed that the different mats hosted distinct microbial communities. Average numbers of operational taxonomic units (OTUsARISA) were relatively lower in the mats with higher oil levels and the number of shared OTUsARISA between the mats was <60% in most cases. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities in the wetland mats were influenced by oil and ammonia levels, but to a lesser extent by plant density. In addition to oil and ammonia, redundancy analysis (RDA) showed also a significant contribution of temperature, dissolved oxygen and sulfate concentration to the variations of the mats' microbial communities. Pyrosequencing yielded 282,706 reads with >90% of the sequences affiliated to Proteobacteria (41% of total sequences), Cyanobacteria (31%), Bacteriodetes (11.5%), Planctomycetes (7%) and Chloroflexi (3%). Known autotrophic (e.g. Rivularia) and heterotrophic (e.g. Azospira) nitrogen-fixing bacteria as well as purple sulfur and non-sulfur bacteria were frequently encountered in all mats. On the other hand, sequences of known sulfate-reducing bacteria (SRBs) were rarely found, indicating that SRBs in the wetland mats probably belong to yet-undescribed novel species. The wetland mats were able to degrade 53-100% of C12-C30 alkanes after 6 weeks of incubation under aerobic conditions. We conclude that oil and ammonia concentrations are the major key players in determining the spatial distribution of the wetland mats' microbial communities and that these mats contribute directly to the removal of hydrocarbons from oil field wastewaters.
منابع مشابه
Hydrocarbon contaminated water remediation using a locally constructed multi-stage bioreactor incorporated with media filtration
The present study investigated the coupling effect of biodegradation and media filtration in treating hydrocarbon contaminated water. The study recorded reductions in total petroleum hydrocarbon, total dissolved solids, turbidity and microbial load. The study was essentially a simulated pump and treat process that involved the pumping of hydrocarbon contaminated water for treatment in a locally...
متن کاملMicrobial Hydrocarbon Degradation: Efforts to Understand Biodegradation in Petroleum Reservoirs
The understanding of the phylogenetic diversity, metabolic capabilities, ecological roles, and community dynamics taking place in oil reservoir microbial communities is far from complete. The interest in studying microbial diversity and metabolism in petroleum reservoirs lies mainly but not only on providing a better comprehension of biodegradation of crude oils, since it represents a worldwide...
متن کاملMicrobial community analysis of Deepwater Horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers.
We investigated the impact of the Deepwater Horizon oil spill on microbial communities in wetland sediment and seawater samples collected from sites along the Gulf shore. Based on GC/MS analysis, the sediment from Bay Jimmy, LA had detectable signs of hydrocarbon contamination, identified as n-alkanes in the GC/MS spectrum similar to that of the Deepwater Horizon source oil (MC-252). To identif...
متن کاملDiesel Degradation and Bioemulsifiers Production Using Bubble-Column with a Microbial Consortium Isolated from Hydrocarbon-Contaminated Soil
Diesel is composed of various toxic compounds that can have a negative influence on the environment including plants, microorganisms, and even groundwater being used for cultivation and human consumption. Diesel oil biodegradation kinetics was investigated using bubble-column reactor and microbial consortium isolated from a hydrocarbons spill site and were assessed<em...
متن کاملThe polycyclic aromatic hydrocarbon degradation potential of Gulf of Mexico native coastal microbial communities after the Deepwater Horizon oil spill
The Deepwater Horizon (DWH) blowout resulted in oil transport, including polycyclic aromatic hydrocarbons (PAHs) to the Gulf of Mexico shoreline. The microbial communities of these shorelines are thought to be responsible for the intrinsic degradation of PAHs. To investigate the Gulf Coast beach microbial community response to hydrocarbon exposure, we examined the functional gene diversity, bac...
متن کامل